首页 | 本学科首页   官方微博 | 高级检索  
     


Surface characteristics of activated carbons obtained by pyrolysis of plasma pretreated PET
Authors:Almazán-Almazán M Carmen  Paredes J Ignacio  Pérez-Mendoza Manuel  Domingo-García Maria  Fernández-Morales Inmaculada  Martínez-Alonso Amelia  López-Garzón F Javier
Affiliation:Departamento de Química Inorganica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
Abstract:Activated carbon materials have been prepared by pyrolysis of plasma pretreated recycled PET. The obtained carbon materials have been texturally characterized by N2 (77 K) and CO2 (273 K) adsorption. Atomic force microscopy (AFM) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) have been used to analyze the surface of the treated precursors. Carbon materials obtained by He, N2, and CO2 plasma pretreatments (4 min) of the precursor and subsequent pyrolysis have shown a higher adsorption capacity than the corresponding chars (untreated pyrolised PET). This effect seems to be related to the elimination by the plasma treatments of low-molecular-weight products in the precursor, which are responsible for the formation of amorphous carbon deposits during the carbonization that blocks the porosity. Longer periods of treatment (15 min) do not favor the opening of the microporosity because cross-linking reactions in the precursor producing high molecular weight deposits prevail. The development of porosity is less relevant if oxygen plasma is used, as a considerable amount of oxygen functionalities are also formed. These groups can decompose during pyrolysation producing the above-mentioned amorphous carbon deposits. The textural characteristics of the carbon materials obtained after 4 min of plasma treatment on the precursor are very similar to those obtained after 4 h of CO2 (1073 K) activation of the same char. Therefore, this method can be an alternative to avoid the burnoff and high energy cost of the activation step.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号