首页 | 本学科首页   官方微博 | 高级检索  
     

硫酸根拉曼频移用于深海热液温度探测的方法探讨
作者单位:1. 中国科学院海洋研究所,中国科学院海洋地质与环境重点实验室,深海极端环境与生命过程研究中心,山东 青岛 266071
2. 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室,山东 青岛 266061
3. 中国科学院大学,北京 101408
基金项目:国家重点研发计划项目(2016YFC0302103),国家自然科学基金委员会-山东省人民政府海洋科学研究中心联合项目(U1606401),国家自然科学基金项目(41576104),中国科学院战略性先导科技专项(A类)(XDA11040301,XDA11030301),中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC004),中国科学院重大科技基础设施开放研究项目(“科学”号科考船)(NMSTI-KEXUE2017K01),科学号高端用户项目(KEXUE2017G07),泰山学者工程专项经费(tspd20161007)资助
摘    要:作为一种典型的深海极端环境,热液区域不仅分布着各种硫化物矿产,而且孕育着特殊的生态群落,对热液流体理化性质的研究有助于深入了解热液的运动机制。激光拉曼光谱技术除了定性分析方面的优势外,已经被逐步用于定量分析,并且在原位探测中发挥了重要作用。该研究模拟了深海热液喷口流体的高温高压环境,探讨了水分子和硫酸根离子的拉曼光谱在热液流体温度探测中的应用价值。通过对水峰ν1(H2O)、硫酸根ν1(SO2-4)的拉曼频移与温度、离子浓度的关系进行研究,结果表明水峰ν1(H2O)和硫酸根ν1(SO2-4)的拉曼频移随温度表现出明显的变化,水峰ν1(H2O)的拉曼频移受流体硫酸根浓度的影响明显,因此不适用于硫酸根离子浓度变化明显的热液流体温度的测量。相比之下,ν1(SO2-4)的拉曼频移对流体硫酸根浓度和流体压力不敏感,为温度的反演提供了很好的依据。建立了ν1(SO2-4)的拉曼频移与温度的线性方程:Rν1(SO2-4)=-0.03T+980.69,其中,R2=0.998 6,可用于对深海热液喷口流体温度的原位探测等实际应用。

关 键 词:激光拉曼光谱  热液流体  硫酸根  温度  
收稿时间:2017-11-13

The Application of Raman Shift of Sulfate in Temperature Detection of Deep-Sea Hydrothermal Fluid
XI Shi-chuan,ZHANG Xin,DU Zeng-feng,LUAN Zhen-dong,LI Lian-fu,WANG Bing,LIANG Zheng-wei,LIAN Chao,YAN Jun. The Application of Raman Shift of Sulfate in Temperature Detection of Deep-Sea Hydrothermal Fluid[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3390-3394. DOI: 10.3964/j.issn.1000-0593(2018)11-3390-05
Authors:XI Shi-chuan  ZHANG Xin  DU Zeng-feng  LUAN Zhen-dong  LI Lian-fu  WANG Bing  LIANG Zheng-wei  LIAN Chao  YAN Jun
Affiliation:1. Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China3. University of Chinese Academy of Sciences, Beijing 101048, China
Abstract:Hydrothermal field is a typical deep-sea extreme environment where there are various sulfide minerals and special ecological communities. The research on the physicochemical characters of hydrothermal fluid is essential to the understanding of hydrothermal activities. The laser Raman spectroscopy has been used both at the qualitative and quantitative analysis, especially the in situ detections in the deep sea. In this paper, we simulated the hydrothermal fluid environment characterized by high temperature and high pressure, and discussed the availability of the Raman shifts of water and sulfate for detecting the temperature of the deep-sea hydrothermal fluids. The experiment results showed that the Raman shifts of the ν1(H2O) and ν1(SO2-4) were sensitive to the temperature. However, the Raman shifts of the ν1(H2O) are also affected by the concentration of sulfate obviously, which is an obstacle to calculating the temperature of the hydrothermal fluid. On the contrary, the Raman shift of the ν1(SO2-4) is insensitive to the concentration of sulfate and fluid pressure, which makes it a good choice to calculate the temperature of the hydrothermal fluid. Therefore, we established the liner relationship equationof the ν1(SO2-4) Raman shift with temperature: Rν1(SO2-4)=-0.03T+980.69, R2=0.998 6, which is also suitable for the in situ measurements of the hydrothermal fluid in the deep sea.
Keywords:Laser Raman spectroscopy  Hydrothermal fluid  Sulfate  Temperature  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号