首页 | 本学科首页   官方微博 | 高级检索  
     


Emulsion polymerization. II. Review of experimental data in the context of the revised Smith-Ewart theory
Authors:J. L. Gardon
Abstract:Tables are presented for convenient calculation of the basic parameters of the revised Smith-Ewart theory. For the methyl methacrylate (MMA)/sodium lauryl sulfate (SLS)/K2S2O8, and for the styrene/SLS/K2S2O8 reaction mixtures parameters are presented from which the absolute values of the following quantities can be conveniently calculated for any temperature, soap, and initiator concentration: particle number, particle radius, conversion where particle nucleation stops, rate and molecular weight in interval II, the interval after completion of particle nucleation and before the disappearance of monomer droplets. The theoretical predictions are compared to new experimental data and to those from the literature. The available data confirm the theoretical prediction that particle nucleation stops after a very small amount of polymer is formed, of the order of 0.01 cc. polymer/cc. water in most recipes. The theory and experiments are in good qualitative agreement for the conversion rate prior to completion of particle formation: the conversion rate rises with time and, when particle nucleation stops, it levels off. Excellent quantitative agreement can be obtained between theoretical and experimental particle size values. In the experiments of this laboratory the SLS concentration was varied 60-fold, the K2S2O8 concentration was varied 140-fold and the difference between theoretical and experimental poly(MMA) particle radii was always less than about 20%. Similar good agreement was obtained for polystyrene over the temperature range 30–90°C. Some polystyrene data from the literature with carboxylic soaps give just as good fit as the data with SLS of this laboratory. The predicted proportionality between particle number and the product of 0.6 power of soap concentration and of 0.4 power of initiator concentration was observed for several monomers. The theoretical predictions for the rate and molecular weight obtained in interval II are valid only for relatively low initiator and high soap recipes. For recipes for MMA and styrene the rate data are in good agreement with those calculated from the theory. The theory also correctly predicts the order of magnitude of the experimental molecular weights. For several monomers the rate and molecular weight vary with initiator and soap concentrations in a manner close to theoretical predictions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号