首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Signals of neutropenia in human breath?
Authors:R Furtwängler  A-C Hauschild  J Hübel  H Rakicioglou  B Bödeker  S Maddula  A Simon  J I Baumbach
Institution:1. Pediatric Hematology and Oncology, Saarland University Hospital, Building 9, 66421, Homburg, Germany
2. Max Planck Institut for Informatics, Im Stadtwald, 66123, Saarbrücken, Germany
3. B&S Analytik, BioMedicalCenter, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
4. Faculty Applied Chemistry, Reutlingen University, Alteburgstra?e 150, 72762, Reutlingen, Germany
Abstract:Children undergoing systemic chemotherapy often suffer from severe immunosuppression usually associated to severe neutropenia (neutrophils <?0.5 x 109/l). Clinical courses during those periods range from asymptomatic to septic general conditions. Development of septic symptoms can be very fast and life-threatening. Swift detection of risk factors in those patients is therefore needed. So far no early, rapid and reliable marker or tool exists. Ion-Mobility-Spectrometry coupled with a Multi-Capillary-Column (IMS-MCC) can analyze more than 600 volatile components from exhaled air within a few minutes and hence is a potential, rapid detection-tool. As a proof of concept we measured the exhaled breath of 11 patients with neutropenia and 10 healthy controls ranging from 3 to 18 years of age at the time of measurement. Ten milliliters breath samples were taken at the outpatient clinic and analyzed with an onsite IMS-MCC (BreathDiscovery, B&S Analytik, Dortmund, Germany). Dead-space-volume was adapted to two groups (small 250 ml, large 500 ml). Interestingly 59 differing peaks were measured. Eleven were significantly different (p?≤?0.05), three of which highly significant (p?≤?0.01) in Mann-Whitney-Rank-Sum-testing. The corresponding analytes used in the decision tree are 2-Propanol, D-Limonene and Acetone. The analytes with the lowest rank sum identified are 2-Hexanone, Iso-Propylamine and 1-Butanol. Eventually we were able to show a three-step-decision-tree, which discerns the 21 samples except one from each group. Sensitivity was 90 % and specificity was 91 %. Naturally these findings need further confirmation within a bigger population. Our pilot-study proves that Ion-Mobility-Spectrometry coupled with a Multi-Capillary-Column is a feasible rapid diagnostic tool in the setting of a pediatric oncology out-patient clinic for patients 3 years and older. Our first results furthermore encourage additional analysis as to whether patients at risk for septic events during immunosuppression can be diagnosed in advance by rapidly assessing risk factors such as Neutropenia in exhaled breath.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号