首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-electron transfer process of vanadyl complexes for oxidative polymerization of diphenyl disulfide
Authors:Kimihisa Yamamoto  Kenichi Oyaizu  Eishun Tsuchida
Abstract:Oligo(p-phenylene sulfide) is synthesized by oxidative polymerization of diphenyl disulfide with oxygen catalyzed by vanadyl acetylacetonate under strongly acidic conditions. The mechanistic studies reveal that the redox cycles of the vanadyl complexes give rise to catalysis through a two-electron transfer between diphenyl disulfide and molecular oxygen. The VO catalysts act as an excellent electron mediator to bridge a 1.0 V potential gap between the oxidation potential of disulfides and the reduction potential of oxygen. The VO-catalyzed oxygen-oxidative polymerization provides pure oligo(pphenylene sulfide)s containing an S–S bond. The polymeric product is of low molecular weight due to the insolubility under these conditions. (N,N′-ethylenebis(salicylideneaminato))oxovanadium-(IV), VO(salen), was used as an inert model compound to elucidate the redox chemistry of the vanadium complex. VO(salen) reacts with trifluoromethanesulfonic acid (CF3SO3H) or triphenylmethyl tetrafluoroborate (?3C(BF4)) to form a deoxygenated complex, VIV(salen)2+, and a μ-oxodinuclear complex, [(salen)VOV(salen)]X2, (X = CF3SO3? or BF4?). The dimerization of VO(salen) is initiated by deoxygenation to produce V(salen)2+ which enters into an equilibrium with a second VO(salen) complex to produce the μ-oxo dimer. The two-electron transfer of the μ-oxo dinuclear vanadium complex is elucidated.
Keywords:vanadyl complex  oxidative polymerization  diphenyl disulfide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号