首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of stoichiometry on chain segment and ion mobility in partially polymerized epoxy systems
Authors:Sue Ann Bidstrup  Joycelyn O. Simpson
Abstract:The temperature dependence of steady-shear viscosity and ionic conductivity were measured for a series of unreacted mixtures and partially cured, ungelled samples of diglycidyl ether of bisphenol-A (DGEBA) and an amine cross-linking agent, diamino diphenyl sulfone (DDS). Six stoichiometric ratios of epoxide groups to amine hydrogens were examined. Free volume expressions were used to model the temperature dependence of the conductivity and viscosity for the unreacted DGEBA-DDS mixtures. In addition, these expressions were combined to successfully correlate changes in viscosity and conductivity during the DGEBA-DDS polymerization prior to gelation. It also was demonstrated that the change in weight average molecular weight during polymerization could be interpreted from the dielectric data. Through studying variations in the stoichiometry, it was possible to examine the effects of changes in chemical structure and ion concentration on the fitted parameters in the free volume models. The inherent ion transport factor (ζ0) was found to be inversely proportional to the concentration of ions in the test samples. The fractional free volume for segmental motion (B) was found to increase with an increase in the glass transition temperature and to be a function of the rigidity of the polymer. ©1995 John Wiley & Sons, Inc.
Keywords:thermosets  epoxy resin  amine cross-linking agents  free volume  rheology  dielectric analysis  viscosity  ionic conductivity  cure monitoring  chain segment mobility  ion mobility  glass transition temperature  weight average molecular weight
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号