首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ansa-Zirconocenium catalysis of syndiospecific polymerization of propylene: Theory and experiment
Authors:Zhengtian Yu  James C W Chien
Abstract:The syndiospecific propylene polymerizations catalyzed by isopropylidene(cyclopentadienyl)(fluorenyl)- and (2,2-dimethylpropylidene)(cyclopentadienyl)(fluorenyl)-zirconocenium ( 1 + and 2 +) have been investigated theoretically and compared with experimental observations. With the ab initio calculated structures for the transition state (TS) of 1 +(M)P and 2 +(M)P (M = propylene, P = 2-methylpentyl), their steric energies (E°) have been computed using MM2 force-field. The difference between steric energies E°(m) and E°(r) for the meso and racemic enchainment of propylene, respectively, is defined as the stereocontrol energy δE°(m ? r)] for syndiotactic propagation. The δE°(m ? r) for the TS of 1 + (M)P is about 2.1 kcal/mol, the value is 1 kcal/mol greater for 2 +(M)P. The observed steric pentad distributions of the syndiotactic poly(propylene) obtained by these catalysts are consistent with smaller effective stereocontrol energy, which is about two-third as large as δE°(m ? r) values calculated for the MM2 optimized structure. Syndiotactic enchainment is favored over isotactic enchainment for all combinations of site configurations in the catalyst. α-Agostic interaction seems to enhance syndioselectivity, whereas γ-agostic interaction changes the stereoselectivity to meso enchainment. The mirror plane symmetry of the syndiotactic propagating species renders the stereoselectivity of the polymerization insensitive to reaction conditions. These catalysts are also highly regiospecific. © 1995 John Wiley & Sons, Inc.
Keywords:Ziegler-Natta catalysis  zirconocene catalysts  molecular modeling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号