Application of different types of resins in the radiometric determination of uranium in waters |
| |
Authors: | Maria Kyriakou Ioannis Pashalidis |
| |
Affiliation: | (1) Department of Chemistry, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus; |
| |
Abstract: | The aim of this study is to compare different resins regarding their separation and pre-concentration efficiency for uranium from aqueous solutions and its subsequent radiometric determination by liquid scintillation counting (LSC). The different types of the investigated resins include: (a) a pure cation-exchange resin (Dowex Marathon C), (b) a complex forming resin (Chelex 100) and (c) an impregnated resin (5% diethylene glycol succinate on Chromosorb W-H). The radiometric measurements were performed after mixing of the pre-concentrated aqueous phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, salinity (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions or humic acid and silica colloids) on the separation recovery have been investigated at constant uranium/radioactivity concentration. According to the experimental results the maximum chemical recovery differs significantly from one resin to another as a function of either, pH or the other chemical parameters. The optimum pH is found to be 8, 4 and 8 for Marathon C, Chelex-100 and diethylene glycol succinate, respectively. On the other hand, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) result in a significant decrease of the chemical recovery of uranium, particularly for Marathon C and the diethylene glycol succinate impregnated resins. Generally, among the studied resins Chelex 100 was superior regarding chemical recovery, selectivity, regeneration and reuse. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|