首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Linear variance bounds for particle approximations of time-homogeneous Feynman–Kac formulae
Authors:Nick Whiteley  Nikolas KantasAjay Jasra
Institution:Department of Mathematics, University of Bristol, Bristol, BS8 1TW, UK; Department of Electrical & Electronic Engineering, Imperial College London, London, SW7 2AZ, UK; Department of Statistics & Applied Probability, National University of Singapore, Singapore, 117546, Singapore
Abstract:This article establishes sufficient conditions for a linear-in-time bound on the non-asymptotic variance for particle approximations of time-homogeneous Feynman–Kac formulae. These formulae appear in a wide variety of applications including option pricing in finance and risk sensitive control in engineering. In direct Monte Carlo approximation of these formulae, the non-asymptotic variance typically increases at an exponential rate in the time parameter. It is shown that a linear bound holds when a non-negative kernel, defined by the logarithmic potential function and Markov kernel which specify the Feynman–Kac model, satisfies a type of multiplicative drift condition and other regularity assumptions. Examples illustrate that these conditions are general and flexible enough to accommodate two rather extreme cases, which can occur in the context of a non-compact state space: (1) when the potential function is bounded above, not bounded below and the Markov kernel is not ergodic; and (2) when the potential function is not bounded above, but the Markov kernel itself satisfies a multiplicative drift condition.
Keywords:Feynman&ndash  Kac formulae  Non-asymptotic variance  Multiplicative drift condition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号