首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites—CoFe2−xZnxO4 (x=0, 0.1, 0.2, and 0.3)
Authors:Nalla Somaiah  Tanjore V Jayaraman  PA Joy  Dibakar Das
Institution:1. School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India;2. Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln 68588, USA;3. Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India
Abstract:Cobalt-ferrite (CoFe2O4) based materials are suitable candidates for magnetomechanical sensor applications owing to a strong sensitivity of their magnetostriction to an applied magnetic field. Zn-doped cobalt-ferrites, with nominal compositions CoFe2−xZnxO4 (x=0–0.3), were synthesized by auto-combustion technique using Co- , Fe- , and Zn-nitrate as precursors. X-ray spectra analysis and Transmission electron microscopy studies revealed that the as-prepared powders were comprised of nano-crystalline (∼25–30 nm) cubic-spinel phase with irregularly-shaped grains morphology along with minor impurity phases. Calcination (800 °C for 3 h) of the precursor followed by sintering (1300 °C for 12 h) resulted in a single phase cubic-spinel structure with average grain size ∼2–4 μm, as revealed from scanning electron micrographs. The magnitude of coercive field decreases from ∼540 Oe for x=0 to 105 Oe for x=0.30. Saturation magnetization initially increases and peaks to ∼87 emu/g for x=0.2 and then decreases. The peak value of magnetostriction monotonically decreases with increasing Zn content in the range 0.0–0.3; however the piezomagnetic coefficient (/dH) reaches a maximum value of 105×10−9 Oe−1 for x=0.1. The observed variation in piezomagnetic coefficient in the Zn substituted cobalt ferrite is related to the reduced anisotropy of the system. The Zn-doped cobalt-ferrite (x=0.1) having high strain derivative could be a potential material for stress sensor application.
Keywords:Cobalt-ferrite  Magnetic-properties  Magnetostriction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号