首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation of pyrrole with iron oxide precipitated on the surface of graphite nanosheet
Authors:Yongqing Yang  Shuhua Qi
Institution:Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi''an 710072, China
Abstract:Fe3O4/NanoG was firstly prepared by precipitation reaction of iron oxide (Fe3O4) on the surface of graphite nanosheet (NanoG). Then composites PPy/NanoG, PPy/Fe3O4 and PPy/Fe3O4/NanoG were prepared by in-situ polymerization of the monomer pyrrole polymerized on the surface of NanoG, Fe3O4 and Fe3O4/NanoG. The structures of Fe3O4/NanoG, PPy, PPy/NanoG, PPy/Fe3O4 and PPy/Fe3O4/NanoG were characterized by scanning electron microscopy, energy dispersive spectroscopy, fourier transmission infrared spectroscopy and X-ray diffraction . Results show that NanoG and Fe3O4/NanoG are encapsulated by PPy for the layered structure and their high aspect ratio (300–500). From the thermogravimetric analysis it can be seen that the introductions of NanoG, Fe3O4 and Fe3O4/NanoG into PPy based composites lead them to exhibit better thermal stabilities than pure PPy. The measurements of electromagnetic parameters show that the reflection loss of PPy/Fe3O4/NanoG is below −15 dB at the X band (8.2–12.4 GHz) and the minimum loss value is −18.30 dB at 9.84 GHz, while the reflection loss of PPy/Fe3O4 is below −10 dB at 8.2–12.4 GHz and the minimum loss value is −14.02 dB at 10.26 GHz. The reflection loss of PPy/NanoG is below −10 dB at 8.2–12.4 GHz and the minimum loss value is −13.44 dB at 10.28 GHz. The microwave absorbing properties of PPy/Fe3O4/NanoG, PPy/Fe3O4 and PPy/NanoG are superior to that of PPy.
Keywords:Nanocomposite  In-situ polymerization  Conducting polymer  Microwave absorbing property  Microstructure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号