首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rigid-flexible block molecules based on a laterally extended aromatic segment: hierarchical assembly into single fibers, flat ribbons, and twisted ribbons
Authors:Lee Eunji  Huang Zhegang  Ryu Ja-Hyoung  Lee Myongsoo
Institution:Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University, Shinchon 134, Seoul, Republic of Korea.
Abstract:Self-assembling rigid-flexible block molecules consisting of a laterally extended aromatic segment and different lengths of hydrophilic coils were synthesized and characterized. The block molecule based on a long poly(ethylene oxide) coil (1), in the melt state, shows an unidentified columnar structure, whereas the molecule with a shorter poly(ethylene oxide) coil (2) self-organizes into an oblique columnar structure. Further decrease in the poly(ethylene oxide) coil length as in the case of 3, on heating, induces a rectangular columnar structure in addition to an oblique columnar mesophase. In diethyl ether, 1 and 2 were observed to self-assemble into uniform nanofibers with bilayer packing. Remarkably, these elementary fibers were observed to further aggregate in a lateral way to form well-defined flat ribbons (1) and twisted ribbons (2) with solvent exchange of diethyl ether into methanol. Furthermore, the ribbons formed in methanol dissociated into elementary fibers in response to the addition of aromatic guest molecules. This transformation between ribbons and single fibers in response to the addition of guest molecules is attributed to the intercalation of aromatic substrates within the rigid segments and subsequent loosening of the aromatic stacking interactions. These results demonstrate that the introduction of a laterally extended aromatic segment into an amphiphilic molecular architecture can lead to the hierarchical formation from elementary fibers of nanoribbons with a tunable twist through controlled lateral interactions between aromatic segments.
Keywords:amphiphiles  nanostructures  ribbons  self‐assembly  solvent effects
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号