首页 | 本学科首页   官方微博 | 高级检索  
     


Fluctuation-induced electromagnetic interaction of a moving particle with a plane surface
Authors:G. V. Dedkov  A. A. Kyasov
Affiliation:(1) Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russia
Abstract:The most general (nonrelativistic) formulas for the force of attraction to the surface and for the drag of a nonrelativistic atom moving parallel to it, as well as for the lateral and normal forces acting on a moving dipole molecule and on a charged particle (in the case of parallel and perpendicular motion), are derived for the first time in the framework of the fluctuational electromagnetic theory. The dependences of these forces on the velocity, temperature, separation, and dielectric properties of the atom and the surface are derived. The effect of the nondissipative resonance interaction between a moving neutral atom and the field of surface plasmons, as well as the possible emergence of a positive (accelerating) force acting on the atom (nanoprobe), is substantiated theoretically. The role of dynamic fluctuational forces and their possible experimental measurement when using the quartz microbalance technique and an atomic-force microscope (in the dynamic mode), as well as during deceleration of atomic beams in open nanotubes, are considered. The correctness of the obtained results is confirmed by their agreement with most of the available theoretical relations derived by other authors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号