首页 | 本学科首页   官方微博 | 高级检索  
     检索      


From atomistic simulation to the dynamics, structure and helical network formation of dendronized polymers: the Janus chain model
Authors:Ding Y  Ottinger H C  Schlüter A D  Kröger M
Institution:Department of Materials, Polymer Physics and Polymer Chemistry, ETH Zürich, Wolfgang-Pauli-Str 10, CH-8093 Zürich, Switzerland.
Abstract:It is the purpose of this paper to establish a bottom-up multiscale approach for dendronized polymers. Based on our understanding of the phenomenology of an atomistic model for this class of polymers, we introduce a "Janus chain" (JC) model which adds a vectorial degree of freedom (Janus vector)--related to the sectorial amphiphilicity--to each segment of the linear backbone of a (classical) uncharged, semiflexible, and multibead chain representation of a polymer. The JC features induced polymeric curvature and ultimately triggers complexation. JC parameters related to the topology and chemical details are obtained from the atomistic level. Available experimental observations including the formation of superstructures and double helical conformations are well reproduced by the JC model. JC is efficiently solved via Brownian dynamics simulation and can be seen as a member of a universality class which is one (two) level(s) above the magnetic (semiflexible) chain model. It therefore should allow to model not only dendronized polymers but also structures belonging to the same class-exhibiting induced (or spontaneous) curvature--such as single stranded DNA and actin filaments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号