首页 | 本学科首页   官方微博 | 高级检索  
     


The disproportionation reaction phase transition,mechanical, and lattice dynamical properties of the lanthanum dihydrides under high pressure: A first principles study
Affiliation:1. Intermountain Medical Center, 5121 S Cottonwood St, Murray, UT, USA;2. University of Utah, 30 N 1900 E, Salt Lake City, UT, USA;3. LipoScience, Laboratory Corporation of America® Holdings, 2500 Sumner Blvd, Raleigh, NC, USA
Abstract:The pressure-induced disproportionation reaction phase transition, mechanical, and dynamical properties of LaH2 with fluorite structure under high pressure are investigated by performing first-principles calculations using the projector augmented wave (PAW) method. The phase transition of 2LaH2 → LaH + LaH3 obtained from the usual condition of equal enthalpies occurs at the pressure of 10.38 GPa for Perdew–Wang (PW91) functional and 6.05 GPa for Ceperly–Adler (CA) functional, respectively. The result shows that the PW91 functional calculations agree excellently with the experimental finding of 11 GPa of synchrotron radiation (SR) X-ray diffraction (XRD) of Machida et al. and 10 GPa of their PBE functional theoretical result. Three independent single-crystal elastic constants, polycrystalline bulk modulus, shear modulus, Young's modulus, elastic anisotropy, Poisson's ratio, the brittle/ductile characteristics and elastic wave velocities over different directions dependences on pressure are also successfully obtained. Especially, the phonon dispersion curves and corresponding phonon density of states of LaH2 under high pressure are determined systematically using a linear-response approach to density functional perturbation theory (DFPT). Our results demonstrate that LaH2 in fluorite phase can be stable energetically up to 10.38 GPa, stabilized mechanically up to 17.98 GPa, and stabilized dynamically up to 29 GPa, so it may remain a metastable phase above 10.38 GPa up to 29 GPa, these calculated results accord with the recent X-Ray diffraction experimental finding and theoretical predictions of Machida et al.
Keywords:Phase separation  Elastic properties  Dynamical  First principles  High pressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号