首页 | 本学科首页   官方微博 | 高级检索  
     检索      


From local to global analysis of defect detectability in infrared non-destructive testing
Institution:1. Pontificia Universidad Javeriana, Dpt. of Electronics and Computer Science, Calle 18, No 118-250 Cali, Colombia;2. Computer Vision and Systems Laboratory, Dpt. of Electrical and Computer Engineering, Laval University, Quebec City, Canada;1. Laboratoire de Magnétisme de Bretagne, EA 4522, Université de Bretagne Occidentale, 6 av. Le Gorgeu, 29285 Brest Cedex, France;2. Institut de la Corrosion, 220 rue Pierre Rivoalon, 29200 Brest, France;3. Lab-STICC/MOM, Telecom Bretagne, Technopôle Brest-Iroise, CS 83818, 29238 Brest Cedex, France;1. Geochronology, Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain;2. Research School of Earth Sciences, The Australian National University, Canberra, Australia;3. Environmental Futures Research Institute, Griffith University, Brisbane, Australia;1. Program of Geochronology, Centro nacional de investigación sobre la evolución humana (CENIEH), Burgos, Spain;2. Research School of Earth Sciences, The Australian National University, Canberra, Australia;3. Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain;4. National Museum of Natural Sciences (MNCN), CSIC, Madrid, Spain;5. Geografía y Ordenación del Territorio, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
Abstract:Several image processing techniques are employed in Infrared Non-Destructive Testing (IRNDT) to enhance defect detectability. To date, there is no adequate global measurement that objectively assesses defect visibility in processed frames. In this work, a Global Signal to Noise Ratio (GSNR) that comprehensively evaluates defect detectability in processed infrared (IR) images is proposed, as well as a defect visibility measure named Infrared Image Quality Index (IRIQI) that compares the structural information of defective and sound areas. In addition, GSNR and IRIQI are validated by using the area under ROC curve (AUC). AUC quantitatively assesses defect visibility by comparing the outcomes of processing techniques to human judgements. The remarkable benefit of this global approach is that it allows one to determine the frame at which processing techniques reveals the majority of the defects by evaluating the times at which AUC curves reach their maxima. The test pieces were a Carbon-Fiber Reinforced Plastic (CFRP) sample containing delaminations and a honeycomb specimen with delaminations, skin unbonds, excessive adhesive, and crushed core.
Keywords:Infrared inspection  Infrared image processing  Defect detectability  Signal to noise ratio
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号