首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cationic and free-radical polymerization of optically active 1-olefins
Authors:R Bacskai
Abstract:The AlCl3-initiated cationic polymerization of optically active 1-olefins yields polymers of varying optical rotatory power. Polymers of (+)-3-methyl-1-pentene and (?)-4-methyl-1-hexene prepared between ?78 and ?55°C. in CH2Cl2 or n-heptane are almost completely optically inactive. Under identical reaction conditions (+)-5-methyl-1-heptene gives polymers of significant optical rotatory power. Alternating SO2copolymers of the same olefins, formed in reactions which proceed through free-radical intermediates, yield optically active products with specific rotations similar to those of low molecular weight analogs. These results are consistent with a cationic polymerization mechanism in which the growing chain undergoes intramolecular hydride shift and the asymmetric carbon atoms are converted into carbonium ions. The data also provide evidence for the lack of rearrangement in free-radical polymerization. By comparing the specific rotations of the cationic and free-radical polymers, the extent of rearrangement during cationic polymerization can be estimated. The calculations show that the 1,2-polymer in cationic poly-3-methyl-1-pentene is less than 2%, the sum of 1,2- and 1,3-polymer in cationic poly-4-methyl-1-hexene is less than 4%, and the sum of 1,2-, 1,3-, and 1,4-polymer in cationic poly-5-methyl-1-heptene is 14–20%.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号