首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and Evaluation as Glycosidase Inhibitors of Isoquinuclidines Mimicking a Distorted β‐Mannopyranoside
Authors:Matthias B  hm,Edwige Lorthiois,Muthuppalaniappan Meyyappan,Andrea Vasella
Affiliation:Matthias Böhm,Edwige Lorthiois,Muthuppalaniappan Meyyappan,Andrea Vasella
Abstract:Racemic and enantiomerically pure manno‐configured isoquinuclidines were synthesized and tested as glycosidase inhibitors. The racemic key isoquinuclidine intermediate was prepared in high yield by a cycloaddition (tandem Michael addition/aldolisation) of the 3‐hydroxy‐1‐tosyl‐pyridone 10 to methyl acrylate, and transformed to the racemic N‐benzyl manno‐isoquinuclidine 2 and the N‐unsubstituted manno‐isoquinuclidine 3 (twelve steps; ca. 11% from 10 ). Catalysis by quinine of the analogous cycloaddition of 10 to (?)‐8‐phenylmenthyl acrylate provided a single diastereoisomer in high yield, which was transformed to the desired enantiomerically pure D ‐manno‐isoquinuclidines (+)‐ 2 and (+)‐ 3 (twelve steps; 23% from 10 ). The enantiomers (?)‐ 2 and (?)‐ 3 were prepared by using a quinidine‐promoted cycloaddition of 10 to the enantiomeric (+)‐8‐phenylmenthyl acrylate. The N‐benzyl D ‐manno‐isoquinuclidine (+)‐ 2 is a selective and slow inhibitor of snail β‐mannosidase. Its inhibition strength and type depends on the pH (at pH 4.5: Ki=1.0 μM , mixed type, α=1.9; at pH 5.5: Ki=0.63 μM , mixed type, α=17). The N‐unsubstituted D ‐manno‐isoquinuclidine (+)‐ 3 is a poor inhibitor. Its inhibition strength and type also depend on the pH (at pH 4.5: Ki=1.2?103 μM , mixed type, α=1.1; at pH 5.5: Ki=0.25?103 μM , mixed type, α=11). The enantiomeric N‐benzyl L ‐manno‐isoquinuclidine (?)‐ 2 is a good inhibitor of snail β‐mannosidase, albeit noncompetitive (at pH 4.5: Ki=69 μM ). The N‐unsubstituted isoquinuclidine (?)‐ 2 is a poor inhibitor (at pH 4.5: IC50=7.3?103 μM ). A comparison of the inhibition by the pure manno‐isoquinuclidines (+)‐ 2 and (+)‐ 3 , (+)‐ 2 /(?)‐ 2 1 : 1, and (+)‐ 3 /(?)‐ 3 1 : 1 with the published data for racemic 2 and 3 led to a rectification of the published data. The inhibition of snail β‐mannosidase by the isoquinuclidines 2 and 3 suggests that the hydrolysis of β‐D ‐mannopyranosides by snail β‐mannosidase proceeds via a distorted conformer, in agreement with the principle of stereoelectronic control.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号