Synthesis and Cytotoxicity Evaluation of Metal‐Chelator‐Bearing Flavone,Carbazole, Dibenzofuran,Xanthone, and Anthraquinone |
| |
Authors: | Yeh‐Long Chen Po‐Hsu Chen Chao‐Ho Chung Kuang‐Chieh Li Haw‐Yaun Jeng Cherng‐Chyi Tzeng |
| |
Abstract: | 2‐(Aryloxymethyl)‐5‐benzyloxy‐1‐methyl‐1H‐pyridin‐4‐ones 8a – 8g , 2‐(aryloxymethyl)‐5‐hydroxy‐4H‐pyran‐4‐ones 9a – 9g , and 2‐(aryloxymethyl)‐5‐hydroxy‐1‐methyl‐1H‐pyridin‐4‐ones 10a – 10g were prepared from the known 5‐benzyloxy‐2‐(hydroxymethyl)pyran‐4‐one ( 3 ) in a good overall yield. These compounds were evaluated in vitro against a three‐cell lines panel consisting of MCF7 (breast), NCI‐H460 (lung), and SF‐268 (CNS), and the active compounds passed on for evaluation in the full panel of 60 human tumor cell lines derived from nine cancer cell types. The results indicated that 5‐hydroxy derivatives are more favorable than their corresponding 5‐benzyloxy precursors ( 10a – 10g vs. 8a – 8g ), and 1‐methyl‐1H‐pyridin‐4‐ones are more favorable than their corresponding pyran‐4(1H)‐ones ( 10a – 10g vs. 9a – 9g ). Among these three types of compounds, 2‐(aryloxymethyl)‐5‐hydroxy‐1‐methyl‐1H‐pyridin‐4‐ones 10a – 10g were the most cytotoxic; they inhibited the growth of almost all the cancer cells tested. On the contrary, compound 8a (a mean GI50=27.8 μM ), 8b (38.5), 8d (11.0), and 8e (30.5) are especially active against the growth of SK‐MEL‐5 (a melanoma cancer cell) with a GI50 of <0.01, 5.65, 0.55, and 0.03 μM , respectively (cf. Table 2). |
| |
Keywords: | |
|
|