首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of radiometer effect on proof mass in purely gravitational orbit
Authors:Hong-wei Liu  Zhao-kui Wang  Yu-lin Zhang
Affiliation:1. Institute of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, P. R. China;2. School of Aerospace, Tsinghua University, Beijing 100084, P. R. China
Abstract:Spacecrafts with the pure gravity environment are of great significance in precision navigation, gravity field measurement for celestial bodies, and basic physics experiments. The radiometer effect is one of the important interfering factors on the proof mass in a purely gravitational orbit. For the gravity field measurement system based on the inner-formation flying, the relationship between the radiometer effect on the innersatellite and the system parameters is studied by analytical and numerical methods. An approximate function of the radiometer effect suitable for the engineering computation and the correction factor are obtained. The analytic results show that the radiometer effect on the inner-satellite is proportional to the average pressure while inversely proportional to the average temperature in the outer-satellite cavity. The radiometer effect increases with the temperature difference in the cavity, and its minimum exists when the cavity radius increases. When the minimum of the radiometer effect arrives, the ratio of the cavity radius to the inner-satellite radius is 1.189 4. This constant is determined by the spherical cavity configuration and independent of the temperature and pressure distributions. When the ratio of the cavity radius to the inner-satellite radius is more than 10, it is believed that the cavity is large enough, the radiometer effect is approximately proportional to the square of the inner-satellite radius, and the influence of the outer-satellite cavity radius on the radiometer effect can be ignored.
Keywords:purely gravitational orbit  proof mass  inner-formation flying system  radiometer effect  cavity radius
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号