首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Indirect detection of nitrogen-14 in solid-state NMR spectroscopy.
Authors:Simone Cavadini  Sasa Antonijevic  Adonis Lupulescu  Geoffrey Bodenhausen
Institution:Laboratoire de Résonance Magnétique Biomoléculaire, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Batochime, 1015 Lausanne, Switzerland. simone.cavadini@epfl.ch
Abstract:NMR spectra of (14)N (spin I=1) are obtained by indirect detection in powders spinning at the magic angle. The method relies on the transfer of coherence from a neighboring "spy" nucleus with S=1/2, such as (13)C or (1)H, to single- or double-quantum transitions of (14)N nuclei. The transfer of coherence can occur through a combination of scalar and residual dipolar splittings (RDS); the latter are also known as second-order quadrupole-dipole cross terms. The two-dimensional NMR spectra reveal powder patterns determined by second- and third-order quadrupolar couplings. These spectra depend on the quadrupolar coupling constant C(Q) (typically a few megahertz), on the asymmetry parameter eta(Q) of the (14)N nucleus, and on the orientation of the internuclear vector r(IS) between the I ((14)N) and S (spy) nuclei with respect to the quadrupolar tensor. These parameters, which can be subject to motional averaging, can reveal valuable information about the structure and dynamics of nitrogen-containing solids. Application of this technique to various amino acids, either enriched in (13)C or with natural carbon isotope abundance, with spectra recorded at various magnetic fields, illustrates the scope of the method.
Keywords:amino acids  magic‐angle spinning  nitrogen‐14 NMR spectroscopy  residual dipolar splittings
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号