首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dielectric effects of step-increased pressure on the mass- and diffusion-controlled linear chain and network macromolecules growth
Institution:“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania;G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia;Department of Inorganic Technology, University of Pardubice, Doubravice 41, Pardubice 53210, Czech Republic
Abstract:The dielectric properties of four stoichiometric liquid mixtures of a diepoxide with two monoamines and two diamines have been studied in real time during the mixture's polymerization isothermally to a linear-chain polymer in two cases and a network polymer in the other two cases, at 1 and 200 bar. The pressure was applied: (a) at the beginning of polymerization, (b) after a small extent of polymerization when the viscosity was low, and (c) after a relatively large extent of polymerization when the viscosity was high. For a fixed polymerization period, pressure increased the dielectric relaxation time much more than any other quantity in all cases, without a change in the distribution of relaxation times. Contributions to the dielectric permittivity and loss from physical and chemical effects have been considered and related to the changes in the dielectric relaxation time, viscosity and polymerization-rate constant as the extent of polymerization increased with time. Pressure is expected to decrease the polymerization rate for all conditions, but the decrease is relatively insignificant at the early stage, when polymerization is mass-controlled. Here other effects override the effect of viscosity increase, and the polymerization rate instead increases. The decrease in the rate becomes significant and predominates only when polymerization becomes diffusion-controlled. Since theories of diffusion-controlled reactions do not consider the mutual slowing of the molecular diffusion and the rate of chemical reactions leading to a macromolecule's growth until its vitrification isothermally, a method for determining the onset of diffusion control was needed. It is shown that this onset can be determined from plotting the rate of polymerization against the dielectric relaxation time. Expressed in terms of the dielectric loss, these plots cross each other. The cross-over point indicates the onset of diffusion control. Thus, the effect of pressure on the dielectric behaviour can be used to determine the change from mass-controlled to diffusion-controlled kinetics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号