Equilibrium O2 distribution in the Zn2+-protoporphyrin IX deoxymyoglobin mimic: application to oxygen migration pathway analysis |
| |
Authors: | McNaughton Lynn Hernández Griselda LeMaster David M |
| |
Affiliation: | Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA. |
| |
Abstract: | Proton spin relaxation induced by the triplet ground state of O(2) in the zinc-containing diamagnetic analogue of sperm whale deoxymyoglobin has been measured as a function of oxygen concentration. As no covalent binding of oxygen to the metal occurs in the zinc species, the relaxation effects of O(2) on the protein (1)H resonances arise exclusively via much weaker noncovalent interactions. The relaxation effects at the amide proton sites are found to be highly localized and are derived almost exclusively from O(2) binding at the four previously identified xenon binding sites. Relative binding constants of 1.0, 0.08, 0.07, and 0.23 were determined for the Xe 1, Xe 2, Xe 3, and Xe 4 sites, respectively. In combination with earlier measurements of the kinetics of the heme binding of oxygen, these equilibria measurements enable a more detailed analysis of models characterizing O(2) entry and egress. A correlation is established between the fraction of O(2) which enters the Fe(2+)-binding site via rotation of the distal histidine side chain (so-called "histidine gate") and the experimentally observable O(2) (or CO) lifetime in the Xe 1 site. A physiological role for these secondary oxygen binding sites is proposed in enhancing the efficiency of the O(2) association reaction by rendering more favorable its competition with water binding in the distal heme pocket. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|