首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid screening of dioxin-contaminated soil by accelerated solvent extraction/purification followed by immunochemical detection
Authors:Malin Nording  Mikaela Nichkova  Erik Spinnel  Ylva Persson  Shirley J. Gee  Bruce D. Hammock  Peter Haglund
Affiliation:1. Environmental Chemistry, Ume? University, 901 87, Ume?, Sweden
2. Swedish Defence Research Agency, 901 82, Ume?, Sweden
3. Department of Entomology and Cancer Research Center, University of California, Davis, CA, 95616, USA
Abstract:Since soils at industrial sites might be heavily contaminated with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), there is a need for large-scale soil pollution surveys and, thus, for cost-efficient, high-throughput dioxin analyses. However, trace analysis of dioxins in complex matrices requires exhaustive extraction, extensive cleanup, and very sensitive detection methods. Traditionally, this has involved the use of Soxhlet extraction and multistep column cleanup, followed by gas chromatography—high-resolution mass spectrometry (GC/HRMS), but bioanalytical techniques may allow much more rapid, cost-effective screening. The study presented here explores the possibility of replacing the conventional method with a novel approach based on simultaneous accelerated solvent extraction (ASE) and purification, followed by an enzyme-linked immunosorbent assay (ELISA). Both the traditional and the novel cleanup and detection approaches were applied to contaminated soil samples, and the results were compared. ELISA and GC/HRMS results for Soxhlet-extracted samples were linearly correlated, although the ELISA method slightly underestimated the dioxin levels. To avoid an unacceptable rate of false-negative results, the use of a safety factor is recommended. It was also noted that the relative abundance of the PCDDs/PCDFs, evaluated by principal component analysis, had an impact on the ELISA performance. To minimize this effect, the results may be corrected for differences between the ELISA cross-reactivities and the corresponding toxic equivalency factor values. Finally, the GC/HRMS and ELISA results obtained following the two sample preparation methods agreed well; and the ELISA and GC/HRMS results for ASE extracts were strongly correlated (correlation coefficient, 0.90). Hence, the ASE procedure combined with ELISA analysis appears to be an efficient approach for high-throughput screening of PCDD-/PCDF-contaminated soil samples. MediaObjects/216_2006_402_Figa_HTML.jpg
Keywords:Immunoassay  ELISA  Soil  Dioxin  Accelerated solvent extraction
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号