首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Higher order structure of proteins solubilized in AOT reverse micelles
Authors:Naoe Kazumitsu  Noda Kazuki  Kawagoe Mikio  Imai Masanao
Institution:

aDepartment of Chemical Engineering, Nara National College of Technology, 22 Yata, Yamato-Koriyama, Nara 639-1080, Japan

bDepartment of Food Science and Technology, College of Bioresource Sciences, Nihon University, 1866, Kameino, Fujisawa, Kanagawa 252-8510, Japan

Abstract:The higher order structure of proteins solubilized in an bis(2-ethylhexyl) sulfosuccinate sodium (AOT) reverse micellar system was investigated. From circular dichroic (CD) measurement, CD spectra of cytochrome c, which is solubilized at the interface of reverse micelles, markedly changed on going from buffer solution to the reverse micellar solution, and the ellipticity values in the far- and near-UV regions decreased with decreasing the water content (W0: molar ratio of water to AOT), indicating that the secondary and tertiary structures of cytochrome c changed with the water content. The ellipticity of ribonuclease A, which is solubilized in the center of micellar water pool, in the near-UV region was dependent on W0 and became minimum when W0 of ca. 8 while the ellipticity in the far-UV region was almost constant, indicating that the tertiary structure of ribonuclease A was affected by the water content, but the secondary structure was conserved. The degree of curvature of the micellar interface appears to influence the protein structure because the reverse micelle size is linearly proportional to the W0 value. As evidence of this, when the micelle size was comparable to the protein's dimensions, the structures were more affected by the water content. Judging from the dependence of the factor influencing the protein structure on the protein species, the location of solubilized protein in reverse micelles is significantly related to whether the protein structure in the system is affected by the micellar interface. In the cases of cytochrome c and lysozyme, the ellipticity against W0 was dependent on the AOT concentration. In contrast, ribonuclease A gave very similar ellipticity values whatever the AOT concentration. In the n-hexane micellar system, cytochrome c exhibited lower ellipticity values and ribonuclease A in the lower W0 range (W0 < ca. 8) higher ellipticity values. These results indicated that the interaction between the protein and the micellar interface is a dominant factor influencing the protein structure in reverse micelles, and that it is governed by the location of solubilized proteins and the state of the micellar interface.
Keywords:Reverse micelle  Protein  Higher order structure  Solubilization
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号