首页 | 本学科首页   官方微博 | 高级检索  
     


pH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly
Authors:Zhang Youwei  Jiang Ming  Zhao Jiongxin  Wang Zhouxi  Dou Hongjing  Chen Daoyong
Affiliation:Department of Macromolecular Science and The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education of China, Fudan University, Shanghai 200433, China.
Abstract:According to our "block-copolymer-free" strategy for self-assembly of polymers, noncovalently connected micelles (NCCM) with poly(epsilon-caprolactone) (PCL) as the core and poly(acrylic acid) (PAA) as the shell in aqueous solutions were attained due to specific interactions between the component polymers. The micellar structure was then locked in by the reaction of PAA with diamine. Afterward, hollow spheres based on PAA network were obtained by either core degradation with lipase or core dissolution with dimethylformamide of the cross-linked micelles. The cavitation process was monitored by dynamic light scattering, which indicated a mass decrease and size expansion. The hollow structure is confirmed by transmission electron microscopy observations. The resultant hollow spheres are pH- and salt-responsive: there is a substantial volume increase when pH changes from acid to base, and vice versa. The volume change takes place dramatically over the pH-range from 5.8 to 7.5. Furthermore, this volume-pH-dependence is found to be completely reversible provided the effect of ionic strength is excluded. The volume change can be adjusted by changing the shell thickness and the cross-linking degree of the hollow spheres. The salt effect on the hollow sphere size depends on pH: with increasing salt concentration the size shows an increase, a decrease, and a little change in acidic, basic, and neutral media, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号