首页 | 本学科首页   官方微博 | 高级检索  
     


Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde
Authors:Choong-Kyun Yeom  Kew-Ho Lee
Affiliation:Membranes and Separation Laboratory, Advanced Polymer Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon 305-606, South Korea
Abstract:Poly(vinyl alcohol) (PVA) membranes crosslinked with glutaraldehyde (GA) were prepared by a solution method for the pervaporation separation of acetic acid-water mixtures. In the solution method, dry PVA films were crosslinked by immersion for 2 days at 40°C in reaction solutions which contained different contents of GA, acetone and a catalyst, HCl. In order to fabricate the crosslinked PVA membranes which were stable in aqueous solutions, acetone was used as reaction medium in stead of aqueous inorganic salt solutions which have been commonly used in reaction solution for PVA crosslinking reaction. The crosslinking reaction between the hydroxyl group of PVA and the aldehyde group of GA was characterized by IR spectroscopy. Swelling measurements were carried out in both water and acetic acid to investigate the swelling behavior of the membranes. The swelling behaviour of a membrane fabricated at different GA content in a reaction solution was dependent on crosslinking density and chemical functional groups created as a result of the reaction between PVA and GA, such as the acetal group, ether linkage and unreacted pendent aldehydes in PVA. The pervaporation separation of acetic acid-water mixtures was performed over a range of 70–90 wt% acetic acid in the feed at temperatures varying from 35 to 50°C to examine the separation performances of the PVA membranes. Permeation behaviour through the membranes was analyzed by using pervaporation activation energies which had been calculated from the Arrhenius plots of permeation rates.
Keywords:Pervaporation   Water-acetic acid mixtures   Poly(vinyl alcohol) membranes   Crosslinking   Glutaraldehyde
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号