首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states
Authors:A Naso  P H Chavanis and B Dubrulle
Institution:(1) INFM, Unitá di Palermo and Dipartimento di Fisica e Tecnologie Relative - Universitá di Palermo, Viale delle Scienze, pad.18, 90128 Palermo, Italy;(2) Radiophysics Department, Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
Abstract:A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. We assume that these constraints are selected by properties of forcing and dissipation. We find that the vorticity fluctuations are Gaussian while the mean flow is characterized by a linear `(w)]-y\overline{\omega}-\psi relationship. Furthermore, we prove that the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. Relaxation equations towards the statistical equilibrium state are derived. These equations can serve as numerical algorithms to determine maximum entropy or minimum enstrophy states. We use these relaxation equations to study geometry induced phase transitions in rectangular domains. In particular, we illustrate with the relaxation equations the transition between monopoles and dipoles predicted by Chavanis and Sommeria J. Fluid Mech. 314, 267 (1996)]. We take into account stable as well as metastable states and show that metastable states are robust and have negative specific heats. This is the first evidence of negative specific heats in that context. We also argue that saddle points of entropy can be long-lived and play a role in the dynamics because the system may not spontaneously generate the perturbations that destabilize them.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号