首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe Thin Films
Authors:E Bacaksiz  S Aksu  M Tomakin
Institution:a Department of Physics, Karadeniz Technical University, 61080 Trabzon, Turkey
b SoloPower, Inc. 5981 Optical Ct., San Jose, CA 95138, USA
c School of Engineering, San Francisco State University, San Francisco, CA 94132, USA
d Department of Physics, Rize University, 53100 Rize, Turkey
Abstract:The structural, morphological, optical and electrical properties of ZnTe films deposited by evaporation were investigated as a function of substrate temperature (at −123 and 27 °C) and post-deposition annealing temperature (at 200, 300 and 400 °C). It was determined that films deposited at both substrate temperatures were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. A small Te peak was detected in XRD spectra for both substrate temperatures, indicating that as-deposited ZnTe films were slightly rich in Te. Larger grains and a tighter grain size distribution were obtained with increased substrate temperature. Scanning electron microscopy (SEM) studies showed that the microstructures of the as-deposited films agreed well with the expectations from structure zone model. Post-deposition annealing induced further grain growth and tightened the grain size distribution. Annealing at 400 °C resulted in randomization in the texture of films deposited at both substrate temperatures. Optical spectroscopy results of the films indicated that the optical band gap value increased from 2.13 to 2.16 eV with increased substrate temperature. Increasing the annealing temperature sharpened the band-edge. Resistivity measurements showed that the resistivity of films deposited at substrate temperatures of −123 and 27 °C were 32 Ω cm, and 1.0 × 104 Ω cm, respectively with corresponding carrier concentrations of 8.9 × 1015 cm−3 and 1.5 × 1014 cm−3. Annealing caused opposite changes in the film resistivity between the samples prepared at substrate temperatures of −123 and 27 °C.
Keywords:ZnTe thin films  Vacuum evaporation  Substrate temperature  Annealing temperature  Microstructure  Optical band gap  Electrical resistivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号