首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of protein-attached conducting polymer monolayer
Authors:Kim Hwa-Jeong  Lee Kyung-Sun  Won Mi-Sook  Shim Yoon-Bo
Institution:Department of Chemistry, Pusan National University, Busan 609-735, South Korea.
Abstract:Cytochrome c (cyt c)-immobilized monolayers and multiple monolayers of a conducting polymer poly(terthiophene-3-carboxylic acid) polymer (poly-TTCA)] were prepared, where the monolayer of monomer precursor was fabricated with the Langmuir-Blogett technique. Covalent immobilization of cyt c was achieved by the formation of an amide bond between the carboxylic groups of the conducting polymer and amines groups of lysine in cyt c. The monolayer of poly-TTCA and poly-TTCA/cyt c was characterized by cyclic voltammetry, XPS, EQCM, Auger electron spectra (AES), and atomic force microscopy (AFM). The immobilization of cyt c on the polymer layer reveals the direct electron-transfer processes of cyt c. Cyclic voltammetry of the poly-TTCA/cyt c-modified electrode showed a pair of reversible peaks at approximately +212/+201 mV (Epa/Epc) versus Ag/AgCl in a 0.2 M phosphate buffer solution (pH 7.0). The peak separation and the redox peak current of the poly-TTCA/cyt c-modified electrodes were gradually increased by increasing the number of poly-TTCA/cyt c layers on the electrode. The heterogeneous electron-transfer rate constant (ks) of cyt c at the poly-TTCA/cyt c-monolayer-modified electrode was estimated to be 0.874 s(-1). The method provides a novel route for the fabrication of protein (cyt c)-immobilized and/or lipid (palmitoyloleoylphosphatidic acid)-immobilized monolayers and multiple monolayers of a conducting polymer. Cyt c bonded on the conductive polymer layers was applied for bioelectronic devices with unique functionality.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号