首页 | 本学科首页   官方微博 | 高级检索  
     


A novel fuzzy C-means algorithm to generate diverse and desirable cluster solutions used by genetic-based clustering ensemble algorithms
Authors:Reza Ghaemi  Md. Nasir Sulaiman  Hamidah Ibrahim  Norwati Mustapha
Affiliation:1. Department of Computer Science, Faculty of Computer Science and Information Technology, University Putra Malaysia, Selangor, Malaysia
Abstract:One of the most significant discussions in the field of machine learning today is on the clustering ensemble. The clustering ensemble combines multiple partitions generated by different clustering algorithms into a single clustering solution. Genetic algorithms are known for their high ability to solve optimization problems, especially the problem of the clustering ensemble. To date, despite the major contributions to find consensus cluster partitions with application of genetic algorithms, there has been little discussion on population initialization through generative mechanisms in genetic-based clustering ensemble algorithms as well as the production of cluster partitions with favorable fitness values in first phase clustering ensembles. In this paper, a threshold fuzzy C-means algorithm, named TFCM, is proposed to solve the problem of diversity of clustering, one of the most common problems in clustering ensembles. Moreover, TFCM is able to increase the fitness of cluster partitions, such that it improves performance of genetic-based clustering ensemble algorithms. The fitness average of cluster partitions generated by TFCM are evaluated by three different objective functions and compared against other clustering algorithms. In this paper, a simple genetic-based clustering ensemble algorithm, named SGCE, is proposed, in which cluster partitions generated by the TFCM and other clustering algorithms are used as the initial population used by the SGCE. The performance of the SGCE is evaluated and compared based on the different initial populations used. The experimental results based on eleven real world datasets demonstrate that TFCM improves the fitness of cluster partitions and that the performance of the SGCE is enhanced using initial populations generated by the TFCM.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号