首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reversing-pulse electric birefringence of multicomponent systems: the formulation and signal simulation for two axially symmetric components in equilibrium and the appearance of unusual signal patterns
Authors:Yamaoka Kiwamu
Institution:

aEmeritus of Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan

Abstract:This paper consists of two parts on reversing-pulse electric birefringence (RPEB) signal patterns. The first is the theoretical formulation of two axially symmetric models coexisting in equilibrium in solution. The present RPEB theory is based on the original Tinoco-Yamaoka theory with classical electric dipole moments, which was recently modified and extended by Yamaoka, Sasai, and Kohno to include various electric and optical parameters and most importantly the ion-fluctuation dipole moment (1/2) along the longitudinal direction of axially symmetric molecules. The theory contains the electric polarizability anisotropy Deltaalpha', which can be either positive or negative in relation to the shape of components. The overall signal can be expressed as the sum of the fractions of two components in proportions to the coefficient F(1) or F(2) (=1-F(1)). The second part is the simulation of theoretical RPEB curves for the two-component system with various sets of electric and hydrodynamic parameters for hypothetical but interesting cases. In consideration of the decay behavior, calculated decay curves were compared with experimentally conceivable signals, classifying them into three categories according to cases: F(1)>1, 0/ktDeltaalpha(') is the crucial factor that controls the pattern of RPEB signals. If q value of one component is positive and the other is negative, the simulated RPEB curves are characterized by three cases: q>0, q<-1, and -10 or q<-1, the resultant patterns are often encountered with experimental signals. If -1
Keywords:Reversing-pulse electric birefringence  Formalism for two-component system  Simulation of RPEB signals  Anomalous humps and dips in transients  Maximum and minimum in decay curves
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号