首页 | 本学科首页   官方微博 | 高级检索  
     


Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins
Authors:Fujisaki Hiroshi  Zhang Yong  Straub John E
Affiliation:Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. fujisaki@bu.edu
Abstract:Without invoking the Markov approximation, we derive formulas for vibrational energy relaxation (VER) and dephasing for an anharmonic system oscillator using a time-dependent perturbation theory. The system-bath Hamiltonian contains more than the third order coupling terms since we take a normal mode picture as a zeroth order approximation. When we invoke the Markov approximation, our theory reduces to the Maradudin-Fein formula which is used to describe the VER properties of glass and proteins. When the system anharmonicity and the renormalization effect due to the environment vanishes, our formulas reduce to those derived by and Mikami and Okazaki [J. Chem. Phys. 121, 10052 (2004)] invoking the path-integral influence functional method with the second order cumulant expansion. We apply our formulas to VER of the amide I mode of a small amino-acid like molecule, N-methylacetamide, in heavy water.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号