首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sliding friction between polymer surfaces: a molecular interpretation
Authors:Allegra Giuseppe  Raos Guido
Institution:Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy. giuseppe.allegra@polimi.it
Abstract:For two contacting rigid bodies, the friction force F is proportional to the normal load and independent of the macroscopic contact area and relative velocity V (Amonton's law). With two mutually sliding polymer samples, the surface irregularities transmit deformation to the underlying material. Energy loss along the deformation cycles is responsible for the friction force, which now appears to depend strongly on V see, e.g., N. Maeda et al., Science 297, 379 (2002)]. We base our theoretical interpretation on the assumption that polymer chains are mainly subjected to oscillatory "reptation" along their "tubes." At high deformation frequencies-i.e., with a large sliding velocity V-the internal viscosity due to the rotational energy barriers around chain bonds hinders intramolecular mobility. As a result, energy dissipation and the correlated friction force strongly diminish at large V. Derived from a linear differential equation for chain dynamics, our results are basically consistent with the experimental data by Maeda et al. Science 297, 379 (2002)] on modified polystyrene. Although the bulk polymer is below T(g), we regard the first few chain layers below the surface to be in the liquid state. In particular, the observed maximum of F vs V is consistent with physically reasonable values of the molecular parameters. As a general result, the ratio FV is a steadily decreasing function of V, tending to V(-2) for large velocities. We evaluate a much smaller friction for a cross-linked polymer under the assumption that the junctions are effectively immobile, also in agreement with the experimental results of Maeda et al. Science 297, 379 (2002)].
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号