首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of uncertainties in polymer viscoelastic properties obtained from equilibrium computer simulations
Authors:Sen Suchira  Kumar Sanat K  Keblinski Pawel
Institution:Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Abstract:We critically evaluate the uncertainties in the stress autocorrelation function obtained from equilibrium molecular dynamics simulation of model polymer melts. This quantity is central to evaluating transport properties, e.g., the complex modulus and the viscosity. In contrast to the intuitive expectation that simulations have to be run five to six orders of magnitude longer than the chain relaxation time to reduce uncertainties to acceptable levels, our analysis shows that the majority of the uncertainty is associated with rapidly oscillating bonded interactions. These fluctuations occur on time scales which are approximately 10(4) times shorter than the relaxation time of a chain of length 80. Consequently, the effects of these oscillations on the stress autocorrelation function can be dramatically reduced by (i) conducting long simulations (typically 10(6) times longer than the bond relaxation times or only 10(2) chain relaxation times) and (ii) by performing running averages with time windows whose time scales are much longer than these oscillations. Conducting such long simulations also allows for the accurate determination of the melt viscosity and the low-frequency complex modulus, but performing running averages do not impact these quantities since they are time integrals of the stress autocorrelation function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号