首页 | 本学科首页   官方微博 | 高级检索  
     


Growth rate studies of CVD diamond in an RF plasma torch
Authors:Baldwin  S. K.  Owano  T. G.  Kruger  C. H.
Affiliation:(1) High-Temperature Gasdynamics Laboratory, Stanford University, 94305-3032 Stanford, California
Abstract:This paper addresses the complex chemistry in the boundary later over a substrate in a chemical vapor deposition rector at atmospheric pressure. In this study, a highspeed plasma (140m/s) was created using a radio-frequency inductively coupled plasma torch for the deposition of diamond thin films. Growth rates on the order of 50 mgrm/ h were obtained for well-faceted continuous films grown on molybdenum substrates positioned normal to the plasma flow. The highest growth rates were obtained at substrate temperatures of 1370 K and a feed gas ratio of 2.5% CH4 in H2. Growth rates are compared to predicted results obtained from numerical simulations, based on a one-dimensional stagnation-point flow, and are/mend to be in good agreement. Several other surface analysis techniques were used to characterize the deposited films, inchaling SEA/, Raman spectroscopy, transmission electron microscopy. Rutherfard backscattering spectroscopy, and hydrogen-forward recoil spectroscopy. Optical emission spectroscopy was used to characterize the RF plasma during the deposition process. Results from these studies form an important database for the validation and improvement of current models of the atmospheric-pressure diamond CVD environment.
Keywords:Chemical vapor deposition  diamond synthesis  growth rate studies  atmospheric pressure  inductively coupled plasma  optical emission spectroscopy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号