首页 | 本学科首页   官方微博 | 高级检索  
     


Data analysis and representation on a general domain using eigenfunctions of Laplacian
Authors:Naoki Saito  
Affiliation:aDepartment of Mathematics, University of California, Davis, CA 95616, USA
Abstract:We propose a new method to analyze and efficiently represent data recorded on a domain of general shape in View the MathML source by computing the eigenfunctions of Laplacian defined over there and expanding the data into these eigenfunctions. Instead of directly solving the eigenvalue problem on such a domain via the Helmholtz equation (which can be quite complicated and costly), we find the integral operator commuting with the Laplacian and diagonalize that operator. Although our eigenfunctions satisfy neither the Dirichlet nor the Neumann boundary condition, computing our eigenfunctions via the integral operator is simple and has a potential to utilize modern fast algorithms to accelerate the computation. We also show that our method is better suited for small sample data than the Karhunen–Loève transform/principal component analysis. In fact, our eigenfunctions depend only on the shape of the domain, not the statistics of the data. As a further application, we demonstrate the use of our Laplacian eigenfunctions for solving the heat equation on a complicated domain.
Keywords:Laplacian eigenfunctions   Boundary conditions   Green's function   Spectral decomposition   Karhunen–  Loè  ve transform   Principal component analysis   Heat equation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号