首页 | 本学科首页   官方微博 | 高级检索  
     


Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells
Authors:Abdulla-Al-Mamun Md  Kusumoto Yoshihumi  Zannat Tohfatul  Islam Md Shariful
Affiliation:Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
Abstract:The photocatalytic and plasmonic photothermal cancer cell-killing activity of the metallic Au-capped TiO(2) (Au@TiO(2)) composite colloidal nanopellets has been investigated on HeLa cells under UV-visible (350-600 nm) light irradiation. The Au@TiO(2) composite nanopellets with the uniform Au-capped TiO(2) structure were successfully synthesized by simple reduction of HAuCl(4) on the surface of TiO(2) nanoparticles. The morphological structure and surface properties of Au@TiO(2) were characterized by using UV-visible absorption spectroscopy, TEM, SEM, XPS, EDX and XRD analyses. The formation of hydroxyl radicals (˙OH) was confirmed by photoluminescence (PL) spectra. The photocatalytic and photothermal cell-killing activity of the Au@TiO(2) nanopellets was found to vary with the molar ratio of Au to TiO(2). The direct involvement of the metal particles in mediating the electron transfer from the photoexcited TiO(2) under the band gap excitation is considered to carry out the efficient photocatalytic reaction on the cells. The plasmonic absorption spectra of Au@TiO(2) suspensions were also measured for the evaluation of photothermal cell killing. The charge separation, the interfacial charge-transfer and photothermal activity promoted the photocatalytic-photothermal cancer-cell killing more than TiO(2) alone. The cytotoxic effect of Au@TiO(2) nanopellets with low concentration of gold (TiO(2) : Au molar ratio > 1 : 1) was found to be 100%, whereas that of the commercial TiO(2) (P25) was ca. 50%. The comparative study of the cell viability using Au alone and TiO(2) alone revealed that the synergistic effect of photocatalytic hydroxyl radical formation and Au-plasmonic photothermal heat generation plays a vital role in the cancer cell killing. A plausible mechanism was also proposed for photocatalytic cancer cell killing based on the obtained results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号