首页 | 本学科首页   官方微博 | 高级检索  
     


Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases
Authors:Michael Lä  mmerhofer
Affiliation:Christian Doppler Laboratory for Molecular Recognition Materials, Department of Analytical Chemistry and Food Chemistry, University of Vienna, Waehringer Strasse 38, A-1090 Vienna, Austria
Abstract:An overview of the state-of-the-art in LC enantiomer separation is presented. This tutorial review is mainly focused on mechanisms of chiral recognition and enantiomer distinction of popular chiral selectors and corresponding chiral stationary phases including discussions of thermodynamics, additivity principle of binding increments, site-selective thermodynamics, extrathermodynamic approaches, methods employed for the investigation of dominating intermolecular interactions and complex structures such as spectroscopic methods (IR, NMR), X-ray diffraction and computational methods. Modern chiral stationary phases are discussed with particular focus on those that are commercially available and broadly used. It is attempted to provide the reader with vivid images of molecular recognition mechanisms of selected chiral selector–selectand pairs on basis of solid-state X-ray crystal structures and simulated computer models, respectively. Such snapshot images illustrated in this communication unfortunately cannot account for the molecular dynamics of the real world, but are supposed to be helpful for the understanding. The exploding number of papers about applications of various chiral stationary phases in numerous fields of enantiomer separations is not covered systematically.
Keywords:Ac-Phe, N-acetyl-phenylalanine   AGP, α1-acid glycoprotein   ADMPC, amylose tris(3,5-dimethylphenylcarbamate)   ANN, artificial neural networks   ANOVA, analysis of variance   ATR, attenuated total reflectance   AX, anion-exchanger   CBH, cellobiohydrolase   CE, crown-ether (in context of chiral selector)   CD, circular dichroism (in context of spectroscopy)   CD, cyclodextrin (in context of chiral selector)   CDMPC, cellulose tris(3,5-dimethylphenylcarbamate)   CIS, complexation-induced chemical shift (Δδ)   CLEC, chiral ligand exchange chromatography   CMPA, chiral mobile phase additive   CoMFA, comparative molecular field analysis   CoMSIA, comparative molecular similarity index analysis   CS, chiral selector   CSP, chiral stationary phase   DEA, diethylamine   DNB, 3,5-dinitrobenzoyl   DNP, 2,4-dinitrophenyl   EEC, enthalpy&ndash  entropy compensation   ELSD, evaporative light scattering detection   FMOC, fluorenylmethoxycarbonyl   Glob-MolInE, global molecular interaction evaluation   HOMO, highest occupied molecular orbital   HILIC, hydrophilic interaction chromatography   HR/MAS, high-resolution magic angle spinning   HSA, human serum albumin   IRE, internal reflection element   Leu, leucine   LFER, linear free energy relationship   LSER, linear solvation energy relationship   LUMO, lowest unoccupied molecular orbital   MCTA, microcrystalline cellulose triacetate   MD, molecular dynamic   MLR, multiple linear regression   MM, molecular mechanics   N-Me-Leu, N-methyl leucine   NOE, nuclear Overhauser effect   NOESY, nuclear Overhauser effect spectroscopy   NP, normal-phase   OVM, ovomucoid   PLS, partial least squares in latent variables   PO, polar organic (mode)   QD, quinidine   QM, quantum mechanical   QN, quinine   QSERR, quantitative structure&ndash  enantioselective retention relationship   QSPR, quantitative structure&ndash  property relationship   QSRR, quantitative structure&ndash  retention relationship   ROE, rotating frame nuclear Overhauser effect   ROESY, rotating frame nuclear Overhauser effect spectroscopy   SA, selectand   SCX, strong cation exchanger   SFC, super-/subcritical fluid chromatography   SMB, simulated moving bed   TAG, teicoplanin aglycone   TFA, trifluoroacetic acid   trNOE, transferred nuclear Overhauser effect   VCD, vibrational circular dichroism   WAX, weak anion-exchanger (WAX)   Wf, warfarin   XRD, X-ray diffraction   ZWIX, zwitterionic ion-exchanger
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号