首页 | 本学科首页   官方微博 | 高级检索  
     


Hydration of clays at the molecular scale: the promising perspective of classical density functional theory
Authors:Guillaume Jeanmairet  Virginie Marry  Benjamin Rotenberg  Daniel Borgis
Affiliation:1. Département de Chimie, école Normale Supérieure-PSL Research University, Paris, France;2. CNRS, UMR 8640 PASTEUR, Paris, Franceguillaume.jeanmairet@ens.fr maximilien.levesque@ens.fr;4. Sorbonne Universités, UPMC Univ Paris 06, PASTEUR, F-75005, Paris, France;5. CNRS, UMR 8234 PHENIX, Paris, France;6. CNRS, UMR 8640 PASTEUR, Paris, France
Abstract:We report here how the hydration of complex surfaces can be efficiently studied, thanks to recent advances in classical molecular density functional theory. This is illustrated on the example of the pyrophyllite clay. After presenting the most recent advances, we show that the strength of this implicit method is that: (1) it is in quantitative or semi-quantitative agreement with reference all-atom simulations (molecular dynamics here) for both the solvation structure and energetics, and (2) the computational cost is two to three orders of magnitude less than in explicit methods. The method remains imperfect in that it locally overestimates the polarisation of water close to hydrophylic sites of the clay. The high numerical efficiency of the method is illustrated and exploited to carry out a systematic study of the electrostatic and van der Waals components of the surface–solvent interactions within the most popular force field for clays, CLAYFF. Hydration structure and energetics are found to weakly depend upon the electrostatics. We conclude on the consequences of such findings on future force-field development.
Keywords:solvation  classical DFT  surfaces  clay
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号