首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intramolecular electron transfer in a bacterial sulfite dehydrogenase
Authors:Feng Changjian  Kappler Ulrike  Tollin Gordon  Enemark John H
Institution:Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.
Abstract:Sulfite dehydrogenase (SDH) from Starkeya novella, a sulfite-oxidizing molybdenum-containing enzyme, has a novel tightly bound alphabeta-heterodimeric structure in which the Mo cofactor and the c-type heme are located on different subunits. Flash photolysis studies of intramolecular electron transfer (IET) in SDH show that the process is first-order, independent of solution viscosity, and not inhibited by sulfate, which strongly indicates that IET in SDH proceeds directly through the protein medium and does not involve substantial movement of the two subunits relative to each other. The IET results for SDH contrast with those for chicken and human sulfite oxidase (SO) in which the molybdenum domain is linked to a b-type heme domain through a flexible loop, and IET shows a remarkable dependence on sulfate concentration and viscosity that has been ascribed to interdomain docking. The results for SDH provide additional support for the interdomain docking hypothesis in animal SO and clearly demonstrate that dependence of IET on viscosity and sulfate is not an inherent property of all sulfite-oxidizing molybdenum enzymes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号