首页 | 本学科首页   官方微博 | 高级检索  
     


Division and fusion, extension, adhesion, and retraction of vesicles created through Langmuir monolayer collapse: cell-like behavior
Authors:Hatta E
Affiliation:Nanoelectronics Laboratory, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan. hatta@nano.ist.hokudai.ac.jp
Abstract:The motion of vesicles created through Langmuir monolayer collapse has been investigated. The vesicles grow only in a narrow molecular area range, and they exhibit remarkable, various biological cell-like behaviors such as division (cell division in cell biology, cytokinesis) and self-propulsion (motility). The vesicle division includes some dynamic modes: (i) an expulsion of a single satellite vesicle from an initial vesicle, (ii) a hierarchical and a sequential expulsion of a satellite vesicle, and (iii) a successive expulsion of two satellite vesicles from an initial vesicle. Two neighboring vesicles often show alternate fusion and division between them. Strong shape fluctuations dominate through vesicle division. The vesicles created exhibit distinct motions depending on the molecular area. At a large molecular area where most initial vesicles are created, they show a continuous, random motion on a few tens of micrometers length scale with a strong shape fluctuation and a constant velocity fluctuation profile. At a small molecular area they cease to move and shape fluctuations also become suppressed. At an intermediate molecular area there coexist vesicles with different dynamic modes: some vesicles show random motion similar to that at a large molecular area, but in a less fluctuating manner, while others exhibit a directional motion with an intermittent velocity jump. The directional motion is characterized by three distinct steps, i.e., extension, adhesion, and retraction. The characteristic motion is discussed from the viewpoint of haptotaxis, or the motion driven by adhesion gradients on the monolayer created by the local transfer of charged surfactant molecules between the vesicle and the monolayer, which the vesicle adheres to.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号