首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strategic design and refinement of Lewis acid-base catalysis by rare-earth-metal-containing polyoxometalates
Authors:Suzuki Kosuke  Sugawa Midori  Kikukawa Yuji  Kamata Keigo  Yamaguchi Kazuya  Mizuno Noritaka
Institution:Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan.
Abstract:Efficient polyoxometalate (POM)-based Lewis acid-base catalysts of the rare-earth-metal-containing POMs (TBA(6)RE-POM, RE = Y(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), or Dy(3+)) were designed and synthesized by reactions of TBA(4)H(4)γ-SiW(10)O(36)] (TBA = tetra-n-butylammonium) with RE(acac)(3) (acac = acetylacetonato). TBA(6)RE-POM consisted of two silicotungstate units pillared by two rare-earth-metal cations. Nucleophilic oxygen-enriched surfaces of negatively charged POMs and the incorporated rare-earth-metal cations could work as Lewis bases and Lewis acids, respectively. Consequently, cyanosilylation of carbonyl compounds with trimethylsilyl cyanide ((TMS)CN) was efficiently promoted in the presence of the rare-earth-metal-containing POMs via the simultaneous activation of coupling partners on the same POM molecules. POMs with larger metal cations showed higher catalytic activities for cyanosilylation because of the higher activation ability of C═O bonds (higher Lewis acidities) and sterically less hindered Lewis acid sites. Among the POM catalysts examined, the neodymium-containing POM showed remarkable catalytic performance for cyanosilylation of various kinds of structurally diverse ketones and aldehydes, giving the corresponding cyanohydrin trimethylsilyl ethers in high yields (13 substrates, 94-99%). In particular, the turnover frequency (714,000 h(-1)) and the turnover number (23,800) for the cyanosilylation of n-hexanal were of the highest level among those of previously reported catalysts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号