首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transannular Diels-Alder reactivities of 14-membered macrocylic trienes and their relationship with the conformational preferences of the reactants: a combined quantum chemical and molecular dynamics study
Authors:Prathyusha V  Ramakrishna S  Priyakumar U Deva
Institution:Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India.
Abstract:Transannular Diels-Alder (TADA) reactions that occur between the diene and dienophile moieties located on a single macrocyclic triene molecule have been recognized as effective synthetic routes toward realizing complex tricyclic molecules in a single step. In this paper, we report a comprehensive study on the TADA reactions of 14-membered cyclic triene macrocycles to yield A.B.C6.6.6] tricycles using quantum chemical methods and using classical molecular dynamics simulations. A benchmark study has been performed to examine the reliability of the commonly used ab initio methods and hybrid density functional levels of theory in comparison with results from CCSD(T) calculations to accurately model TADA reactions. The energy barriers obtained using the M06-2X functional were found to be in quantitative agreement with the CCSD(T) level of theory using a reasonably large basis set. Conformational properties of the reactants have been systematically studied using extensive molecular dynamics (MD) simulations. For this purpose, model systems were conceived, and force field parameters corresponding to the dihedral terms in the potential energy function were obtained. Linear relationship between the activation energies corresponding to the TADA reactions and the probability of finding the reactant in certain conformational states was obtained. A clustering method along with optimizations at the molecular mechanics and density functional M06-2X levels has been used to locate the most stable conformation of each of the trienes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号