首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis, structures, and properties of two three-dimensional metal-organic frameworks, based on concurrent ligand extension
Authors:Shi Dabin  Ren Yanwei  Jiang Huanfeng  Cai Bowei  Lu Jiaxian
Affiliation:School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
Abstract:A tritopic carboxylate ligand, tris(4'-carboxybiphenyl)amine (L-H(3)), has been synthesized and applied in the construction of microporous metal-organic frameworks (MOFs). Two novel metal-organic frameworks (MOFs), {[Zn(2)(L)(OH)]·2DMF·H(2)O}(∞) (1) and {[Cu(L-H)(DMA)]·DMA·2H(2)O}(∞) (2), have been constructed out of L-H(3), Zn(2+), and Cu(2+), respectively. 1 has a 2-fold interpenetrating three-dimensional framework formed by L connectors and the [Zn(2)(CO(2))(3)] secondary building units (SBUs). As for 1, it is worth pointing out that one μ(2)-OH group links two Zn atoms between two neighboring SBUs to produce interesting Zn-O-Zn zigzag chains in the structure. 2 has a two-dimensional grid sheet formed by L-H connectors and the typical paddle-wheel [Cu(2)(CO(2))(4)] SBUs. Two-dimensional (2D) sheets nest with each other, which finally forms a three-dimensional (3D) nested framework. Two MOFs are characterized by infrared (IR) spectroscopy, thermogravimetry, single-crystal and elemental analyses, and powder X-ray diffraction methods. Framework 1' exhibits high permanent porosity (Langmuir surface area = 848 m(2)/g), high thermal stability (up to 450 °C), highly active properties for Friedel-Crafts alkylation reaction, as well as the potential application for the CO(2) gas storage and luminescent material. The catalytic results reveal that 2' is indeed an efficient heterogeneous catalyst for olefin epoxidation reactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号