首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanistic information from low-temperature rapid-scan and NMR measurements on the protonation and subsequent reductive elimination reaction of a (diimine)platinum(II) dimethyl complex
Authors:Wik Bror J  Ivanovic-Burmazovic Ivana  Tilset Mats  van Eldik Rudi
Institution:Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
Abstract:A detailed kinetic study of the protonation and subsequent reductive elimination reaction of a (diimine)platinum(II) dimethyl complex was undertaken in dichloromethane over the temperature range of -90 to +10 degrees C by stopped-flow techniques. Time-resolved UV-vis monitoring of the reaction allowed the assessment of the effects of acid concentration, coordinating solvent (MeCN) concentration, temperature, and pressure. The second-order rate constant for the protonation step was determined to be 15200 +/- 400 M(-1) s(-1) at -78 degrees C, and the corresponding activation parameters are DeltaH = 15.2 +/- 0.6 kJ mol(-1) and DeltaS = -85 +/- 3 J mol(-1) K(-1), which are in agreement with the addition of a proton that results in the formation of the platinum(IV) hydrido complex. The kinetics of the second, methane-releasing reaction step do not show an acid dependence, and the MeCN concentration also does not significantly affect the reaction rate. The activation parameters for the second reaction step were found to be DeltaH = 75 +/- 1 kJ mol(-1), DeltaS = +38 +/- 5 J mol(-1) K(-1), and DeltaV = +18 +/- 1 cm(3) mol(-1), strongly suggesting a dissociative character of the rate-determining step for the reductive elimination reaction. The spectroscopic and kinetic observations were correlated with NMR data and assisted the elucidation of the underlying reaction mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号