首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyoxometalates paneling through {Mo2O2S2} coordination: cation-directed conformations and chemistry of a supramolecular hexameric scaffold
Authors:Marrot Jérôme  Pilette Marie Anne  Haouas Mohamed  Floquet Sébastien  Taulelle Francis  López Xavier  Poblet Josep M  Cadot Emmanuel
Institution:Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint Quentin, 45 Avenue des Etats-Unis, 78035 Versailles, France.
Abstract:The chemical system based on the Mo(2)O(2)S(2)(OH(2))(6)](2+) aqua cation (noted L) and the trivacant AsW(9)O(33)](9-) polyoxometalate (noted POM) has been investigated. Depending upon the ionic strength and the nature of the alkali cations, these complementary components assemble to yield three different architectures derived as hexamer (1), tetramer (2), and dimer (3). This series of clusters displays the same stoichiometry {POM(6)L(9)}(36-), {POM(4)L(6)}(24-), and {POM(2)L(3)}(12-) for 1, 2, and 3, respectively, and their conditions of formation differ mainly by the nature and the concentration of the alkali cation (from Li to Cs). Structural characterizations of 1 reveal a large hexameric supramolecular scaffold (about 25 ? in diameter), which encloses a large internal hole (about 200 ?(3)) filled by water molecules and alkali cations (Na(+) or K(+)). The hexameric scaffold 1 exhibits a rare flexibility property evidenced in the solid state by two distinct conformations, either eclipsed (1a) or staggered-off (1b). Both conformations appear clearly separated by a large twist angle (~40°) and depend mainly on the composition of the internal hole. Structure of anion 2 shows a tetrahedral arrangement where the four POM units and the six connecting {Mo(2)O(2)S(2)} linkers are located at the corners and at the edges, respectively. The structure of anion 3 corresponds to the simplest arrangement, described as a dimeric association of two POM units linked by three {Mo(2)S(2)O(2)} pillars. Stability of the hexameric scaffold has been investigated in solution by (183)W and (39)K NMR and by UV-vis, showing that stability of 1 depends strongly on the proportion of potassium ions, which interfere through host-guest exchange. Density functional methodology (DFT) has been applied to compute the geometries and energies of dimer (3), tetramer (2) and hexamer (1) based on {AsW(9)O(33)} (POM) and {Mo(2)O(2)S(2)} (L) units. Calculations tend to show that internal cations act as "glue" to maintain the POM units connected through the conformationally inward-directed {Mo(2)O(2)S(2)} linkers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号