首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-performance graphene oxide electromechanical actuators
Authors:Rogers Geoffrey W  Liu Jefferson Z
Institution:Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia. geoff.rogers@monash.edu
Abstract:Having demonstrated unparalleled actuation stresses and strains, covalently bonded carbon-based nanomaterials are emerging as the actuators of the future. To exploit their full potential, further investigations into the optimum configurations of these new materials are essential. Using first-principle density functional calculations, we examine so-called clamped and unzipped graphene oxide (GO) as potential electromechanical actuator materials. Very high strains are predicted for hole injection into GO, with reversible and irreversible values of up to 6.3% and 28.2%, respectively. The huge 28% irreversible strain is shown to be the result of a change in the atomic structure of GO from a metastable clamped to more stable unzipped configuration. Significantly, this strain generation mechanism makes it possible to hold a constant strain of 23.8% upon removal of the input power, making this material ideal for long-term, low-power switching applications. A unique contraction of unzipped GO upon electron injection is also observed. It is shown that the origin of this unique behavior is the modulation of the structural rippling effect, which is a characteristic feature of GO. With reversible strains and stresses in excess of 5% and 100 GPa, respectively, GO is poised to be an extremely useful material for micro/nanoelectromechanical system actuators.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号