首页 | 本学科首页   官方微博 | 高级检索  
     检索      


QCD phase diagram at finite isospin and baryon chemical potentials with the self-consistent mean field approximation
Authors:Zu-Qing Wu  Jia-Lun Ping  Hong-Shi Zong
Institution:1. Department of Physics, Nanjing University, Nanjing 210093, China2. Department of Physics, Nanjing Normal University, Nanjing 210023, China3. Nanjing Proton Research and Design Center, Nanjing 210093, China4. Department of Physics, Anhui Normal University, Wuhu 241000, China
Abstract:The self-consistent mean field approximation of the two-flavor NJL model, with a free parameter \begin{document}$\alpha$\end{document} to reflect the competition between the "direct" channel and the "exchange" channel, is employed to study the QCD phase structure at finite isospin chemical potential \begin{document}$\mu_I$\end{document}, finite baryon chemical potential \begin{document}$\mu_B$\end{document} and finite temperature T, and especially to study the location of the QCD critical point. Our results show that in order to match the corresponding lattice results of isospin density and energy density, the contributions of the "exchange" channel need to be considered in the framework of the NJL model, and a weighting factor \begin{document}$\alpha=0.5$\end{document} should be taken. It is also found that for fixed isospin chemical potentials, the lower temperature of the phase transition is obtained with increasing \begin{document}$\alpha$\end{document} in the \begin{document}$T-\mu_I$\end{document} plane, and the largest difference of the phase transition temperature with different \begin{document}$\alpha$\end{document}'s appears at \begin{document}$\mu_I \sim 1.5m_{\pi}$\end{document}. At \begin{document}$\mu_I=0$\end{document} the temperature of the QCD critical end point (CEP) decreases with increasing \begin{document}$\alpha$\end{document}, while the critical baryon chemical potential increases. At high isospin chemical potential (\begin{document}$\mu_I=500$\end{document} MeV), the temperature of the QCD tricritical point (TCP) increases with increasing \begin{document}$\alpha$\end{document}, and in the low temperature regions the system will transition from the pion superfluidity phase to the normal phase as \begin{document}$\mu_B$\end{document} increases. At low density, the critical temperature of the QCD phase transition with different \begin{document}$\alpha$\end{document}'s rapidly increases with \begin{document}$\mu_I$\end{document} at the beginning, and then increases smoothly around \begin{document}$\mu_I>300$\end{document} MeV. In the high baryon density region, the increase of the isospin chemical potential will raise the critical baryon chemical potential of the phase transition.
Keywords:QCD phase transition  strong interaction  nuclear matter
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理C(英文版)》浏览原始摘要信息
点击此处可从《中国物理C(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号