首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of composition drift on the effectiveness of random copolymer reinforcement at polymer–polymer interfaces
Authors:J. J. Benkoski  G. H. Fredrickson  E. J. Kramer
Abstract:Random copolymer layers are surprisingly effective at reinforcing polymer–polymer interfaces. One hypothesis is that composition drift during synthesis can account for the higher than expected toughening. To test this hypothesis, we polymerized a series of poly(d‐styrene‐r‐2‐vinylpyridine) (dPSfr‐PVP1?f) copolymers with various fractions (f) of deuterated styrene to only 10% completion to avoid composition drift. The fracture energies (Gc) of polystyrene/dPS‐r‐PVP/poly(2‐vinylpyridine) interfaces with relatively thick layers of dPS‐r‐PVP were measured. Gc decreased relative to interfaces reinforced with composition‐drifted dPS‐r‐PVP. Conversely, Gc increased when two or more copolymers were blended together. In such samples, the copolymers form distinct layers with multiple interfaces characterized by the difference in ff) between adjacent layers. We find that Gc is governed by Δfmax, the largest difference in adjacent compositions, and, therefore, by the width of the narrowest interface (wmin). Gc increases strongly as wmin increases from 3 to 5 nm. Remarkably, these wmin values are about half the entanglement spacing in bulk polystyrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2363–2377, 2001
Keywords:random copolymer  adhesion  composition drift  chain friction  entanglements  interfacial width  fracture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号